[image: image1.jpg]COMPUTER
NETWORKS

[image: image2.jpg]EI SEVIER

[image: image3.jpg]NDER

MEMBER NODE

NON-MEMBER NODE — O

STEINER TREE LINK

Cost of each edge is identical.
Total Cost of Steiner Tree =7
Total Cost of Shortest Path Tree = 10

SHORTEST PATH LINK

[image: image4.jpg]

[image: image5.jpg]Average load per link

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

20

30 40 50
Number of conferences

60

Shortest Path
Steiner

70

80

Computer Networks 32 (2000) 35±60

www.elsevier.com/locate/comnet

A Їexible multicast routing protocol for group communication

Sudhir Aggarwala,*, Sanjoy Paulb, Daniel Masseyc, Daniela Caldararud
a
Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, USA

b
Bell Laboratories, Holmdel, NJ 07733, USA

c Department of Computer Science, UCLA, Los Angeles, CA 90024, USA

d
Department of Computer Science, SUNY at Binghamton, NY 13902, USA

Abstract

Multicast routing, once dominated by a single routing protocol, is becoming increasingly diverse. It is generally

agreed that at least three routing protocols, PIM, DVMRP, and CBT will be widely deployed and must interoperate.

This signals a shift from the Mbone as one large domain to a collection of administrative domains where each domain

selects its own multicast routing protocol.

This paper proposes another multicast routing protocol, Conference Steiner Multicast (CSM), that is suited for

domains that implement OSPF as the unicast routing protocol. CSM is targeted towards (sparse) multicast confer-

encing and online discussion groups. Characteristics of such discussion groups include any member being a speaker or

listener and dynamic changes in the group membership. CSM is futhermore well suited for domains with mobile hosts

because its basic architecture can support a mobile environment.

CSM is based on the use of a shared, heuristic Steiner minimal tree for interconnecting group members. A key

component of the design is that it dynamically and reliably shifts to a dierent tree as changes warrant. CSM supports

rudimentary entry control for security and permits application assistance over routing decisions (termed Application

Assisted Routing).

This paper describes the architecture of CSM as well as a prototype implementation. Several CSM routers have been

interconnected to form a Multicast Steiner Backbone (Msbone). Standard applications such as vat, vic, and wb [V.

Jacobson, Multimedia Conferencing on the Internet, Tutorial 4, ACM SIG-COMM 94, August 1994] have been

modi®ed to run on Msbone. CSM is designed to connect to the Mbone via interoperation with DVMRP, and as in-

teroperation standards develop it should be capable of implementing these standards.
У
2000 Elsevier Science B.V. All

rights reserved.

Keywords:
Multicast routing; Conference; Steiner tree; Shared tree; Shortest path tree; Mobile multicast; Inter-domain multicast;

Switching tree

1. Introduction

Most communication on the Internet is based

on a single sender, single receiver model. Examples

* Corresponding author.

E-mail addresses: sudhir@research.bell-labs.com (S. Aggar-

wal), sanjoy@research.bell-labs.com (S. Paul).

include applications such as telnet, ftp, and web

browsing. Many newer applications, however, do

not ®t into this model. Any application where the

same data is sent to multiple receivers, such as an

audio conference, is better supported by a model

termed multicast where data is sent to a speci®c

group and is only duplicated for delivery purposes

when necessary. In the past decade, there has

been an ever increasing interest in the design and

1389-1286/00/$ - see front matter
У
2000 Elsevier Science B.V. All rights reserved.

PII: S 1 3 8 9 - 1 2 8 6 (9 9) 0 0 1 2 3 - 1

36

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

implementation
of
multicast
capabilities

[6,11,13,14,32,42,43]. The idea was ®rst imple-

mented in the multicast backbone (Mbone) [15,42].

The Mbone began as a small virtual network on

top of the existing Internet, workstations served as

routers, and multicast packets were exchanged by

encapsulating them in unicast packets, termed

tunneling. The Distance Vector Multicast Routing

Protocol (DVMRP) [42] speci®ed the protocol for

routing and delivery of multicast packets. The

Mbone today covers thousands of networks with

growing portions of the Mbone consisting of entire

administrative domains with production routers

handling both unicast and multicast routing. It is

now almost universally agreed that the Mbone will

not consist of a single routing protocol. Instead

dierent domains will choose to implement dier-

ent multicast routing protocols, just as the case for

unicast routing protocols.

DVMRP remains the clearly dominant routing

protocol. DVMRP, and Multicast Open Shortest

Path First (MOSPF) [32], are designed for densely

distributed group members. Furthermore, these

schemes were designed in support of separate

source based trees for each sender. Important

protocols that have focused also on sparsely dis-

tributed group members, such as Protocol Inde-

pendent Multicast (PIM) [12] and Core-Based

Tree (CBT) [5], have received considerable atten-

tion. More recently, protocols like EXPRESS [18]

and Simple Multicast [7] have simpli®ed the mul-

ticast address allocation problem faced by PIM

and CBT, respectively.

Into this growing mix of routing protocols, this

paper explores the design and implementation of

Conference Steiner Multicast (CSM), ®rst pro-

posed in [1]. This protocol is not proposed as the

sole routing protocol for multicasting, as no single

protocol will likely suce. Instead CSM is de-

signed as a protocol that could be used for a do-

main such as a university or company. The

protocol is well suited for domains that wish to

eventually support mobile hosts and that use Open

Shortest Path First (OSPF) for unicast routing.

We also believe that the protocol warrants con-

sideration as a backbone protocol, similar in na-

ture to Border Gateway Multicast Protocol

(BGMP) [29]. CSM could connect a site to the

Mbone through interoperation with DVMRP.

While the standards for multicast routing protocol

interoperations are still undergoing active devel-

opment, we anticipate that CSM will be able to

implement the standards as they take shape.

CSM is based on the use of a (shared) heuristic

Steiner minimal tree for connecting members of a

group. However, by using our notion of Applica-

tion Assisted Routing (AAR), the shared tree for

any particular conference can be determined

through input from conference members. CSM has

the following properties:

1. It supports group communication that takes

place on a shared tree over which each user

can send or receive. It can be used to support

both sparse and dense groups although we feel

it is more appropriate for the support of sparse

groups.

2. It provides for basic entry control into a discus-

sion group.

3. It supports application assisted routing where

the application (speci®c discussion group) can

suggest the type of tree to be used for multicast.

4. It provides for dynamic joining and leaving of

members of the discussion group and the same

primitives are used to implement the mobility

aspects of the protocol.

5. It provides for a mechanism to asynchronously

(with respect to membership changes) switch to

a `better' tree when necessary. The ability to

seamlessly move to another tree is also a key

component for supporting mobility.

6. It can scale to large numbers of multicast

groups.

7. It separates issues of fault tolerance into stan-

dard mechanisms for handling failures of rout-

ers and links in the Internet and speci®c

mechanisms for handling failures of CSM com-

ponents.

8. It de®nes how inter-domain multicasting would

be handled.

The idea of using shared trees for group com-

munication is not novel. For example, the CBT [5]

protocol also advocates the use of a shared tree.

We argue, however, that it is preferable to use

heuristic Steiner minimal trees rather than shortest

path or ad hoc centered trees, as it will likely be

essential to conserve network resources as the

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

37

number of multicast conferences in the network

increases dramatically. Our approach is in contrast

with [14] which suggests that the cost of shortest

path source based trees is really not that bad as

compared with heuristic Steiner minimal trees.

Furthermore although the cost of using core based

trees [10] might also be cost eective, we see no

advantage to doing so as they may suer from

concentration problems unless the cores are cho-

sen from a suciently wide set.

The idea of switching to another tree has also

been previously suggested (see for instance [14]

again) but to our knowledge no speci®c mecha-

nisms or architectures have been proposed. [10]

discusses migration of cores but also does not

propose a precise architecture to eect the migra-

tion. In this paper, we discuss these mechanisms in

great detail. We also explore to a greater extent

than usual the issues of reliability, authentication

and interdomain operations.

Our work describes how mobile multicast can

be handled and this has not been proposed by

other multicast protocols. The same ideas that are

used to implement discussion groups with partici-

pants leaving and joining fairly regularly can also

be used to support multicasting where the appli-

cations are mobile. Although we have not deter-

mined the overhead of supporting mobility using

this approach, we believe it is worth exploring.

Our implementation illustrates many of the

features of our protocol, shows CSM's ability to

support existing conferencing applications, as well

as its potential for interoperation with other mul-

ticast routing protocols.

In Section 2 of this paper, we discuss why a

heuristic Steiner minimal tree is appropriate for

discussion groups. In Sections 3 and 4, we present

the CSM protocol architecture and show how it

supports conferencing and AAR. The extensions

necessary for supporting mobile applications are

discussed in Section 5, resulting in mobile CSM.

Implementation of CSM is described in Section 6,

where we describe the development of our Msbone

using CSM capable routers. We show how existing

Mbone applications such as vat, vic, wb, etc. can

interoperate transparently, over both our Msbone

and the current Mbone. Section 7 compares our

protocol with other multicast protocols developed

over the past several years and the ®nal section

presents some conclusions and thoughts on future

work. Appendix A contains a list of abbreviations

used in this paper.

2. Multicast using Steiner trees

The problem of determining the minimum

weight tree that spans a given subset of nodes D of

a graph
G
V Y E
with edge weights is know as

the Steiner Problem for graphs [17]. A Steiner

minimal tree is de®ned as the optimal shared tree if

the sum of the edge weights is to be minimized.

The problem has been well studied and is known

to be an NP-complete problem [24]. Reasonable

heuristics exist [26,35,38], however, for ®nding an

approximate solution in polynomial time. See also

[31,33] for more ecient heuristics in the class that

uses shortest path and minimal spanning tree al-

gorithms. The time complexity of these heuristics

is typically OjV j3). For example, we use the

Takahashi Matsuyama heuristic [38], which is

OjDkV j2to determine our heuristic Steiner trees

[3]. These heuristics are guaranteed to produce a

tree whose cost is within twice that of the Steiner

minimal tree. Thus, although ®nding a Steiner

minimal tree is dicult, it is fairly straightforward

to ®nd heuristic Steiner trees. See [21,40] for in-

teresting surveys on such problems. Ad hoc cen-

tered trees that use reasonable heuristics for

®nding `good' shared trees may also be useful and

are supported by our notion of Application As-

sisted Routing. In the rest of this paper, we will use

the term CO Steiner tree to mean an approximate

(close-to-optimal) Steiner minimal tree determined

using a heuristic such as Takahashi Matsuyama.

We will use the term Steiner tree to refer to a

Steiner minimal tree or a CO Steiner tree.

2.1. Steiner trees and shortest path trees

Our architecture for CSM is only dependent on

running an algorithm that determines a shared

tree. In fact our routers can run a variety of shared

tree algorithms based on trac considerations.

Thus we implement Application Assisted Routing

where the application itself provides information

[image: image6.jpg]Standard deviation

10

20

30 40 50
Number of conferences

60

Shortest Path ——
Steiner ---

70

80

38

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

on the best-shared tree to use. As default, however,

we create a CO Steiner tree. For example, if the

trac was such that a single source was the

dominant transmitter and delay was important

then a heuristic such as [27,28] could be used to

obtain a shared tree. Or if it was felt that the trac

was likely to come equally from a ®xed number of

participants, then an average centered shared tree

[39,41] could be used. Heuristics to select cores for

core based trees [10] could also be used for the

shared tree. However, as discussed in [10] the

problem of concentration can become a worse

problem for core based trees unless the cores are

selected from a wide enough set.

Many computationally tractable heuristic al-

gorithms have been developed in the literature to

determine CO Steiner trees. For current multi-

casting, however, the dominant algorithms in use

create a shortest path tree from the source (as-

suming a single source) to the receivers [37,44].

The shortest path tree is the tree that results when

the shortest paths to each receiver are combined to

form a tree by not duplicating common edges.

Steiner trees have been deemed to be unsuitable

for multicasting as compared with shortest path

trees because of two problems:

1. the maximal delay is longer than that for short-

est path trees; and

2. it is often argued that trac is concentrated on

the Steiner spanning tree links whereas in the

shortest path trees the trac is more distributed.

Shortest path trees are usually optimal if it is

desired to minimize the delay from each confer-

ence participant, although even this may not be

true if the additional load imposed by shortest

path trees is signi®cant. If necessary, maximal de-

lay bounds can be incorporated into the shared

tree heuristics. We believe that the low cost of

shared trees is a more compelling argument and

that the network delays are greatly dominated by

delays in the software processing of the protocol

stack in the end applications. It was also shown by

[14] that the maximum path lengths of CO Steiner

trees seemed to be at most twice that of shortest

path trees when comparing single sources.

The second argument is actually misleading

when one considers the situation of having a large

number of discussion groups, each of which is a

sparse subset of a larger graph. Actually, the no-

tion of concentration is rarely de®ned precisely.

Intutively, for a single discussion group it is true

that the trac is `concentrated' on the Steiner links

of that discussion group. This concentration,

however, simply means that the Steiner tree links

support all the trac and that the other links in

the network support zero trac. For source based

shortest path trees more links in the network are

supporting trac related to that discussion group.

In fact more trac is generated overall because the

shortest path trees tend to bifurcate earlier and

hence a packet multicast over a Steiner tree that

would not be duplicated until later, is often du-

plicated very early in a shortest path tree. See

Fig. 1. Many studies have shown that there are

ineciencies of shortest path trees over Steiner

trees. These ineciencies translate into overall

load in the network rather than problems of

`concentration' when discussing large numbers of

multicast groups.

In the next subsection we discuss some results

of a study [9] that compares Steiner trees to

shortest path trees when there are a large number

of discussion groups in the network.

2.2. Simulation results of Steiner trees vs. shortest

path trees

The essence of our argument is that as the

number of discussion groups increases in the net-

Fig. 1. Steiner tree generates less trac compared to shortest

path tree.

[image: image7.jpg]Maximum load on links

10

20

30 40 50
Number of conferences

Shortest Path ——
Steiner

70

80

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

work, the total trac increases more for source-

based trees than for Steiner trees. With a large

number of discussion groups, just as the total

trac is distributed throughout the network for

source-based trees, so will the total trac be dis-

tributed throughout the network for Steiner trees.

In fact, using the law of large numbers, one would

expect that any particular link would have a nor-

mally distributed trac load with a mean that

would be less for Steiner trees. Thus, source-based

trees lose the much acclaimed advantages of dis-

tributing trac in a real network with large

numbers of multicast sessions running at the same

time.

In our simulation study, CO Steiner trees using

the Takahashi Matsuyama (TM) heuristic were

compared with shortest path trees. Although we

used the TM heuristic, we could well have used

more ecient heuristics such as [31,33]. However,

39

we used TM because it is readily available and is

more commonly used as a Steiner tree heuristic.

Both directed and undirected graphs were con-

sidered, but we report on only the undirected

case.

Graphs were generated using a modi®ed version

of Waxman's [43] approach. In order to be closer

to real world networks, graphs were generated by

®rst generating a number of autonomous systems

and then interconnecting a small percentage of the

nodes in each autonomous system with nodes in

neighboring systems. The average node degree

ranged from 5 to 10 in the study. For each au-

tonomous system, the nodes were generated by

uniformly distributing them in a rectangular area.

The probability of connecting two nodes depended

on the distance between the two nodes:

P
eАd uYv aLaY
where
d
uY v
is the distance between the two

nodes
u
and v,
L
the maximum distance between

any two nodes in the graph, and
a
is a parame-

ters in (0,1]. As a
decreases, the density of short

edges relative to long edges increases. The aver-

age node degree was used to determine the den-

sity of edges in the graph. See Fig. 2 for a typical

graph of 36 nodes distributed in four autono-

mous systems, with an average node degree of 5

and a
0X2.

Fig. 2. Graph with 36 nodes and 4 autonomous systems.

Conferences were generated based on Wax-

man's construction with the ®rst member of the

conference being randomly chosen and the other

members chosen with the probability

P
eАdaLd Y

where
d
is the least distance between the new

member to be chosen and existing members in the

conference. If
d
is small (of the order of 0.01)

the conference group is called locally dense (all the

members will be concentrated in a small region of

the ®rst member) while if d is of the order of 0.5,

the conference is called sparse (all members will be

fairly far apart). L is again the maximum distance

between two nodes in the graph. It was assumed

that in a conference any member was equally likely

to be a speaker. Note that a conference of a given

number of members (usually between 10 and 20) is

generated. Shortest path trees were computed for

each speaker to the rest of the group, and the

Takahashi Matsuyama heuristic was used to create

the (unique) CO Steiner tree for the group.

Results are reported for a graph (network) with

800 nodes in 16 autonomous systems for a sparse

conference. The graphs had an average node de-

gree of between 5 and 8. The number of members

in a conference was taken as 10. We plotted results

[image: image8.jpg]L
e
o
o
-
(724
D
T
o
L
)]

Steiner -----

peo| abeiaAe / peoj xey

30 40 50 60 70 80
Number of conferences

20

10

[image: image9.jpg]Maximum delay

10

12

14 16
Number of conference members

Steiner
Shortest Path

18

20

[image: image10.jpg]Maximum load on links

5 6
Number of conferences

Shortest Path ——
Steiner ---

40

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

as a function of the number of conferences which

ranged from 1 to 80. We ®rst describe the results

for loading in the network by considering the

following metrics computed for both Steiner trees

and shortest path trees:

·
Average load on a link: This is de®ned as the av-

erage of the loads over all the links (edges) in the

network. For each conference, each multicast

packet that travels over a link increases the load

of that link by 1 for the Steiner tree. For short-

est path trees, with 10 conference members,

there are 10 dierent shortest path trees (one

for each sender in the group) and each shortest

path tree increases the load of any link on its

tree by 1/10.

·
Maximum load on a link: This is de®ned to be

the maximum load over all the links in the

graph.

·
Standard deviation of the load on a link: The

standard deviation of the load over the n links

of the graph.

The average load is shown in Fig. 3. As we have

argued, the average load increases with the num-

ber of conferences and is signi®cantly more for

shortest path trees as the number of conferences

becomes large. In a real sense this is a measure of

concentration in the network.

It is widely stated that shortest path trees gen-

erate a lower trac concentration as compared

with shared trees. One possible meaning might be

that the authors believe the maximum load on a

link or the standard deviation of load on a link

Fig. 3. The average load ± sparse conferences.

Fig. 4. The maximum load ± sparse conferences.

might be lower for shortest path trees. Figs. 4 and 5

show that this is not true as the number of con-

ferences increases.

The argument might hold only for a very small

number of conferences. In fact our simulation re-

sults do indicate this. Interestingly, however, the

`small number' is really small. Fig. 6 shows the

maximum load in more detail for 1 to 10 confer-

ences and even here Steiner trees quickly have

lower maximum load performance.

In [4] it was recognized that since the average

load of a typical shortest path tree was more than

for a shared tree, it might be better to de®ne

concentration as the ratio of maximum load to

average load. Even here it can be seen that as the

number of conferences increases, Steiner trees

Fig. 5. Standard deviation of load per link ± sparse confer-

ences.

[image: image11.jpg]@ @ @ P Host Machines

Router in MSBONE Ay

which is not a part
. / 1 4
llll:nllln,‘ber m
S ¥ Gy
1
[Ri

g / \\Links not used

of the Steiner Tree

G =
gatekeeper ~ Aq

R =
G gatekeeper Ry

C2)

| STEINER 4

: TREE ~

. Router

' 1
: \ 1 y)

I

. in Steiner Tree
:
| Az
MSBONE —
R |3 BX;
MULTICAST GROUP @

={A A ALAA) @ @ @

Ag A4 <— Applications

[image: image12.jpg]- m wm e e e = e o o -
- - - - hadi B P
- - = bl .
- - - - -
- - -

— - -
- - e o = hadadi i - .
P - . ~ -
- -
-
-

-—— . - .- -

-

- -
-

- - -
- -
- -
-
-
-

-~ -
-~

Path Addition to
Steiner Tree: = =

GA = A

GR = R2

DR; = Ry

Rg = Ry
1) A_GA_Join_sparse (4 , DRy) request 2) GA_GR_Compute-src-route (DR;) request
3) GA_A_Join_sparse (Yes/No) reply 4) GR_R _loset-distribution(R; , {Ry , Ry })
5) GR_R _loset-distribution(Ry , {Ry , Ry }) 6) GR_R _loset-distribution(R, , {R; })

7) GR_R _loset-distribution(R , {R, , R })

[image: image13.jpg]Naive

Reconfi

gured

AdbuatoTyyaur 3jusoiag

]
[n——

— |
l‘
F—

=

————

R Illl.
~—

—]

e

-y

P ——

. —
e

B "]
e |
‘r
——]
rrm——— |

‘

B ——]
——————]
=

E—

———

————g

————— |

e —

e}

3

e]
e]

e ———]
——————
b}

e ——]
]
———— |
- e
\A‘l

= “
-~

R —— .]
———

e ———arer——]
e]

S —————— |
J——

——]

e

—

—
v

‘ —
IJ_
——]
- < ———
mm—

e |
e———]
r——— |

-

]

e e———————]
e

e
 ———————co——
—]
———]
e
"]

R]

eer—]

e ——

gt

]

ey

e

B —

“ |

900 1000

200 300 400 500 600 700 800
Number of modifications

100

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

41

Fig. 6. The maximum load for 1±10 conferences ± sparse con-

ferences.

provide better (lower) concentration. In Fig. 7, the

trade-o occurs after about 30 conferences.

The results above argue that whatever the notion

of concentration is de®ned to be, as the number of

conferences increases, Steiner trees becomes sig-

ni®cantly more bene®cial as compared with shorted

path trees with respect to load on the network.

As indicated previously, it is certainly true that

the maximum path delay for a Steiner tree would

be greater than for a shortest path tree. This delay

is the maximum path length between two nodes in

the Steiner tree and the maximum path length

from the sender to a receiver over all possible

senders in the shortest path trees for the confer-

ence. Since this result does not depend on the

number of conferences (all results are averaged

Fig. 7. Maximum load/average load ± sparse conferences.

over many simulation runs) we plot the maximum

delay as a function of the number of members in a

conference. See Fig. 8.

Note that the maximum delay for a Steiner tree

for our detailed study of a conference with 10

members is about 1.5 times the maximum delay for

a shortest path tree. This result is consistent with

other such reports in the literature [4,12,14]. Fur-

ther results relating to locally dense conferences

and directed graphs can be found in [9]. We now

turn to a description of the CSM protocol design.

3. The conference Steiner multicast protocol

The architecture of CSM is designed for use in

an environment where the discussion group typi-

cally has more than one active speaker and the

speaker is also a listener, although it is also ap-

propriate for the situation of only one speaker and

the rest listeners. The protocol has been designed

so that it can scale to use in a network with a large

number of such discussion groups. The scaling is

possible because the functions of determining the

admission policy and the shared tree for a partic-

ular session are distributed throughout the net-

work. A basic aspect of the protocol is that

members of the group can easily join or leave the

discussion group. This feature of the protocol will

be particularly exploited when we discuss the ex-

tensions needed for mobile CSM in Section 5. The

protocol is most appropriate in support of sparse

Fig. 8. End-to-end delay ± sparse conferences.

42

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

groups, although we believe that the protocol

could also be used for dense groups.

The protocol provides a low level of security

through its registration mechanism that can ®lter

members who are allowed to join the discussion

group. The security that is provided is of two

types: ®rst, admission control permits refusing of

join requests and secondly, and more importantly,

routing tables can only be updated by request from

other routers, thus preventing applications from

causing havoc by unconstrainted joins or join re-

quests. Of course, application level security

mechanisms should still be used for privacy and

higher level security.

A key aspect of the protocol is that it has an

adaptive component that periodically determines

how much the current multicast tree diers from

the CO Steiner tree and provides a mechanism to

switch to a more ecient multicast tree. See [1,3]

and also more recently [10]. For example, if the

current tree was 20% more costly than the CO

Steiner tree, it might be preferable to switch. This

feature of switching to another tree is done asyn-

chronously with respect to the dynamic aspects of

group membership modi®cation due to the joining

and leaving of members, and provides highly reli-

able delivery of packets during the critical transi-

tion phase using the Dualcast protocol [3]. The use

of Dualcast during the switch allows a seamless

transition to a new tree by multicasting on two

trees simultaneously. In the context of mobile

networks, a notion of multicasting on redundant

links is used to eect handos between Mobile

Support Stations. This can also be viewed as using

a version of the Dualcast protocol.

In this section we discuss the architecture of the

basic CSM protocol without the mobility aspects.

The CSM protocol has three major phases: (1)

initialization, in which a new discussion group is

registered and a CO Steiner tree or other shared

tree is determined for that group; (2) ongoing op-

erations, in which members of the group send

multicast messages to other members of the group,

and during which time the membership of the

groups changes as members join and leave the

group; and (3)
switching, in which a new shared

tree is determined to be needed and dualcast is used

to eect a fault-tolerant transition to a new tree.

Before discussing the details of the protocol, we

present some assumptions on the network envi-

ronment and the notation that we shall use.

Assumptions

1. We describe CSM for an autonomous system

where the underlying unicast routing protocol

is OSPF. Inter-domain operation can be sup-

ported using BGP. We expect that the limita-

tions of CSM due to its reliance on an

underlying link state protocol [30] will be less

important as an increasing number of domains

support OSPF.

2. The Msbone is implemented by having cooper-

ating routers running a multicast Steiner rout-

ing daemon
msrouted
that implements the

CSM protocol. The msrouteds are interconnect-

ed using tunnels just as the mrouteds in MBone.

The
msrouteds
are assumed to have the com-

plete topology of the autonomous system just

as in OSPF.

3. The cooperating router over Msbone could ac-

tually run any shared tree algorithm using AAR

based on input from the session initiator, but

for the rest of this paper, unless otherwise indi-

cated, we assume that the router computes a

CO Steiner tree. We use the term multicast

router or simply router for a cooperating router

over the Msbone that is running msrouted.

4. We assume that there is some support at the ap-

plication-layer to ®lter out duplicate packets.

For many applications that use a higher level

protocol such as RTP [36], this support is auto-

matically included.

5. We assume that there is an application level

daemon running in each area that is a multi-

cast sessions directory (MSD) server. This ap-

plication level daemon is accessible to anyone

wishing to determine possible multicast ses-

sions, and has the Їavor of session directory

(sdr) in Mbone [23]. This MSD server could

be built in a decentralized hierarchical man-

ner, but we do not address this issue in this

paper.

Notation

1. A discussion group G consists of a set of n ap-

plications involved in the multicast session.

[image: image14.jpg]Old Member: ()
New Member: :)

Old and New Member: ‘O)

- e wm e wn o am am o - - . -

GA = A, !
i l ’
GR= R, /@ | s
J V4
\ | 3,
N
O R
i C&P Router -
: C Router
' only S e
: -
MULTICAST GROUP

S UhAAAA) ()

CURRENT MULTICAST TREE
PROPOSED MULTICAST TREE -

,\
Ag \"1) @ Vo) A7
Ay
—n
g @)
ffsje Y
]
.,) R = Ag
! 2.
i H
Iyl
:
t
2 1
1 :
~3JY Rg ;
> |
!
]
]
: A3
1 2 l
]

—————————————————————————

O

CURRENT MULTICASTGROUP={A1,1§,‘§,4§,~§}
= = = PROPOSED MULTICAST GROUP={AI,P§,1%,A1 A8}

[image: image15.jpg]

[image: image16.jpg]

[image: image17.jpg]Old discarded Links

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

43

Each application can send/receive data multi-

cast messages to/from all other applications in

the group. The ith application is Ai, its corre-

sponding host node is
Hiand its designated

multicast router is
DRi. The CO Steiner tree

of our protocol will be a spanning tree covering

the multiset
fDR1Y F F F Y DRng. This tree will be

termed
Tree(G). The DR runs
msrouted, and

is on the same subnet as the host. An applica-

tion will be assumed to be known by an Appli-

cation ID that incorporates information such as

the application's email address and UDP/TCP

port number.

2. A multicast group becomes `operational' once it

has registered with its area MSD server. The

MSD server maintains information on each

group such as the following:

(a) Multicast IP address and port number,

(b) Type of group,

(c) Membership of the group,

(d) Description of the multicast session.

The information entry for group G
in MSD is

termed Entry. We discuss the speci®c compo-

nents of Entry when discussing registration.

3. Corresponding to each registered group
G,

some application, say A1, initiates the registra-

tion process of the group. In the implementa-

tion section we shall see that this is done by a

user running a software interface tool called

umsd. The ®rst action of creating a group is ac-

tually to start up a special application that exe-

cutes the registration process and that will be

responsible for authentication of new group

members if the group is of a certain type

(Closed
group). This special application is

termed Gatekeeper Application (GA) and usual-

ly runs on the same local area network (or even

the same host) as A1. For simplicity, we shall

identify this gatekeeper application with A1, al-

though it can actually be a distinct application

from the initiator. See the implementation sec-

tion for more details. The Designated Router

(DR) for
GA
is important and we term this

router Gatekeeper Router (GR). The gatekeeper

application is speci®c to a group G and hence a

GA should be ideally represented as GA(G) and

the corresponding GR should be represented as

GR(G). However, the terms GA and GR will be

used instead of the terms GA(G) and GR(G) un-

less it is necessary to do so.

4. The logical distinguishable entities in our archi-

tecture that can send and receive messages are

thus Application (A), Router (R), MSD, Desig-

nated Router
(DR),
Gatekeeper Application

(GA), and
Gatekeeper Router
(GR). For sup-

porting mobile applications we will use one ad-

ditional entity, a MobileSupportStation (Mss).

5. As a matter of convenience, the message prim-

itives exchanged between the logical entities

are named according to a convention. Each

primitive is of the form
Source_Destina-

tion_Message
(parameters) followed by
re-

quest/reply where
Source is the sending entity

and Destination is the target entity. Message is

the name of a message, and parameters are spe-

ci®c to a given message. Request typically repre-

sents a request for a speci®c service, while reply

is the response corresponding to a given re-

quest. The
Source/Destination
part of a mes-

sage, or the request/reply part is omitted when

there is no ambiguity based on the context.

For instance, if the message is
A_GA_Join_

sparse (Aj, DRj), then the message is from an

application A (source) to the Gatekeeper Appli-

cation GA (destination), the name of the mes-

sage is Join_sparse and the parameters are
Aj
and DRj.

The notation discussed above is summarized in

Table 1.

3.1. Registration

Before a group can become operational, it is

necessary for information about the group session

to become generally available. As discussed pre-

viously, we assume this is done through an MSD

Table 1

Notation

Ai
ith application belonging to group G

Hi
Host machine running Ai

DRi
Designated Router for Hi

Ti
Trac descriptor corresponding to Ai

GA
Application registering a session for group G

GR
Multicast router serving GA

MSD
Multicast Session Directory

[image: image18.jpg]-— wn W amy
o -

2) user launches the

gatekeeper Application

- - -

Gatekeeper N

\
A

s} Application
UsetUMSD F=-=--"7""7

/
/
!
!
!
)
'

Msrouted 1
Gatekeeper Router

3) GA notifies Mgrouted 1
that it will be the new group’s GR

MSD

1) user registers new group _
with MSD -

)
\
\
H |

A user on LAN 1 creates a new group.
The group is registered with the muiticast
group directory, MSD. A gatekeeper application
is launched and an msrouted is selected to
act as the gatekeeper router. All messages
are sent via TCP. The UMSD tool will perform
all these actions when the user clicks on create.

Msrouted 5

[image: image19.jpg]- an =
e i
—-— e dit Y
e -
- -,
-

Gateper [=== !
,'| Application \
4 \
!

[}

1

]

]

]

: Msrouted 4
I

[}

1

Msrouted 1|
Gatekeeper Router.

\ ~ o
A \\ ‘\.
\ - -~
5 ’ ~ Te-a. Msrouted 3
- ’ - -
5~‘I \‘

2) GA informs ~e oL .
GR of new LANs 3) GR sends route table updatey
to msrouted 3 and 4, adding

tunnels 1-3 and 3-4 to the group

New group members join on LANs 3 and 4.
The new members contact the GA for
permission via TCP. The GA informs the

- GR of the new LANS, again via TCP.

The GR computes a new tree and sends route
update messages, via TCP, to msrouted 3 and 4.

[image: image20.jpg]The Msrouted Router divided into four modules

topology Topology
GateKeeper Router | changes Tabili topology | Topology Leaming
- -

Module - - updates

’
‘ ’
request ; route updates for
from ’I ‘\ msrouted’s on tree Route Table

GA ¢
Tunnel Message
Control Message entries route lmkups Handl $28
andler

Handler

|
! \
: & S h ;
\ I , . -
0 \ . ’ .
\ \ ,
! ‘v \ y [
' ‘ multicast packets from
I) s
! route updates route multicast packe o o
! out to msrouted’s updates outto LAN or LAN ghbor
* ink neighbor msrouted : or)
Oroup e alee 2 “;m or topology learning packets
atekeeper .
topology learning packets from neighbor msrouted

from GA to Gatekeeper
Router

Router out to neighbor msrouted

[image: image21.jpg]Gatekeeper | -
Application \‘

Msrouted 1

Gatekeeper Router i
17| UDe{ edbone o] [FTDATA |
N

-
h Y
\

| DATA]

i3
7
AN

! \]
- o
-

The member on LAN 3 multicasts

a packet to the group. Msrouted3

sees this packet and based on its

route entry for the group forwards the
packet via the tunnel to msrouteds 1 and 4.
Msrouteds 1 and 4 both muiticast the packet

locally.

44

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

server that can be queried (using the interface tool

umsd) to determine the available multicast sessions

and their characteristics. We shall further assume

that there is an MSD server in each domain (called

area MSD) and that these servers communicate

with one another to insure that information about

multicast sessions is current and available to all

potential participants.

Assume that an application wishes to register a

potential group G with its area MSD. Because it is

the initiator of a discussion group, this application

is GA and its designated router is GR. GR plays a

crucial role in the CSM protocol. The gatekeeper

application contacts MSD by sending a

GA_MSD_Register request message containing

the IP address of GR
and also containing the fol-

lowing information:

1.
Type(G): Type of group. A group can be either

open or closed. An open group is one where

any one can join without any permissions

from the gatekeeper. A closed group is one

where the
GA
is responsible for admitting

new participants. A group can also be
sparse

or dense.

2.
Membership(G): Membership of the group. The

membership of the group consists of the initial

set of applications that will be involved in the

discussion group.

3.
Description(G): Description of group. This infor-

mation might be needed to allow potential par-

ticipants to decide whether or not they want to

join a session.

On receiving the Register request message,

MSD replies by adding the group to its list of

discussion groups (creating an Entry) and sending

a MSD GA Register reply message back to the

gatekeeper application. The MSD server also de-

termines
Address(G) which is a multicast IP ad-

dress and port at which the group will operate.

Thus, an
Entry contains at least the following in-

formation:
Address(G),
Type(G),
Membership(G),

Description(G),
GA(G), and GR(G). An entry in a

typical MSD table is shown in Table 2.

Once the GA receives the Register reply message

from MSD, it sends a GA_GR_Register request

message to
GR
indicating that
GR
will be re-

sponsible for computing a CO Steiner tree for the

group.

Table 2

MSD table

Entry[i]
Address G hClass-D IP AddressY
Port

Numberi

Type G
Closed, Sparse

Membership G fAig

Description(G)
``Discussion on Stock Prices''

GA G hHost IP AddressY
port numberi

GR G hRouter IP AddressY
port numberi

Note that using application assisted routing,

GA could also send a code-number (the AAR in-

formation provided by the gatekeeper application)

to GR indicating the type of shared tree to create.

This code-number will be used by GR to execute

the appropriate routing algorithm for the group. A

speci®c AAR code-number might also include

additional information such as expected trac or

bandwidth limitations.

To review then, the message primitives for

registration are:

1.
Register request/reply (between GA and MSD)

and

2.
Register request/reply (between GA and GR).

3.2. The multicast CO Steiner tree

Given the set of
DRs
associated with the ap-

plications of a group, the gatekeeper router will

generate the corresponding CO Steiner tree.

As discussed previously, we assume that the GR

has the complete topology of its domain and is

thus able to compute a CO Steiner tree using a

heuristic such as Takahashi Matsuyama. The in-

put to this algorithm is simply all the multicast

routers in the domain and the associated link in-

formation, similar to the type of information that

a protocol such as OSPF requires, plus the set of

DRs.

Using the AAR code, an approximate Steiner

minimal tree heuristic might also use the trac

information previously de®ned to help in de®ning

an even more appropriate tree. We have not done

a detailed study of the use of such trac infor-

mation, but we believe that any of the heuristics

can be improved by using this information. The

resulting spanning tree
Tree(G) (when using the

default shared tree algorithm) is a CO Steiner tree

[image: image22.jpg]

[image: image23.jpg]

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

45

that uses a common set of links over which to

transmit packets. See Fig. 9.

In our implementation, the Takahashi Matsu-

yama heuristic is used to compute the CO Steiner

tree. The Takahashi Matsuyama heuristic works

as follows. Start with an arbitrary
DR
and its

trivial (partial) spanning tree. Iteratively choose

the closest
DR
to the current tree from the re-

maining set of DRs and update the partial span-

ning tree by adding the path from this DR to the

tree. Note that the path may contain routers which

are not
DRs. These routers are needed to inter-

connect the
DRs
in the Steiner tree. The set of

routers that constitute the CO Steiner tree for

group G is referred to as Routers(G).

The fact that only the
GR
computes the CO

Steiner tree and is responsible for subsequent up-

dates is one important element in the scalability of

our protocol. For each group, there will be a GR,

but any multicast router can be a GR. Thus, for a

large number of discussion groups, it is expected

that the function of the GR would be fairly uni-

formly spread among the multicast routers. We

have proposed that the GR for a group would be

determined as being the closest router to the ap-

plication that initially set up the group. However,

it is possible that this function of load maintenance

might not be spread out suciently among avail-

able routers. In such a case, it would certainly be

possible to implement a slightly more sophisticated

algorithm at the
GA
to choose some other
GR
if

Fig. 9. Steiner tree and related terms.

necessary. We have not investigated this load

balancing issue further.

It should also be observed that calculating the

CO Steiner tree is at worst similar in polynomial

time complexity to ®nding all shortest paths in a

network and is done infrequently as compared to

the ongoing operational aspects of the protocol.

In our simulation study, we computed both CO

Steiner trees and shortest path trees and the

computation times were comparable.

The
GR
now sends
io-set
information1(dis-

cussed in the next section) to each router in

Routers(G) using the
GR_R_Ioset_distribution

primitive. This
io-set information is dierent for

each router in Routers(G) and is unicast to Rout-

ers(G). We assume that this control information

can be sent in a reliable manner, either by using

TCP (as in our implementation) or by sending the

information repeatedly.

Since the
io-set information will be sent out in

parallel to all the routers in Routers(G), the time to

do this distribution will be the maximum one-way

delay between the GR and a router in Routers(G).

Typical one-way coast-to-coast delay is on the

order of hundreds of milliseconds. Thus we believe

that the io-set distribution time is not something to

be concerned about.

3.3. Steady state CSM protocol operation

The steady state CSM protocol operation from

the perspective of the Routers(G) is quite simple.

Each router in Routers(G) has an entry termed the

Rentry
corresponding to each discussion group G.

Rentry
contains the IP multicast address for G, an

io-set, and a delivery-set. The io-set (for G) is the

set of the incoming/outgoing links (called virtual

links) to other adjacent routers in
Tree(G). The

delivery-set is the set of links (called physical links)

to hosts containing applications being serviced

by the router. If there is a common interface be-

tween the io-set and the delivery-set, it is removed

from the io-set to prevent looping. See Table 3.

1
Can be thought of as routing table entries.

[image: image24.jpg]

[image: image25.jpg]

46

Table 3

Rentry
in the routing tables

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

We outline two methods, Sparse Set Join and

Dense Set Join, that will allow Ajto have DRjjoin

Rentry
[1]

.

.

.

Rentry
[n]

Class-D address
io-set

.
.

.
.

.
.

Class-D Address
io-set

delivery-set

.

.

.

delivery-set

the shared tree for G by connecting to Rg. We shall

assume that the join method is indicated in the

Entry
of MSD (for example, through the type

®eld) and depends on the membership and type of

the discussion group. Assume furthermore, that

Dense Set Join is only used for Open type groups.

As an example, the io-set for router R1in Fig. 9

is {2}, while its delivery-set is {1}. Similarly, the io-

set for router R6in Fig. 9 is {1, 2, 3, 4}, while its

delivery-set is empty.

Any IP packet arriving on an io link with the IP

multicast address of G is simply forwarded on all

the other io links. For instance, if a packet arrives

for group G at router R6through io link
1, it will

forward the packet on io links 2, 3 and 4 (Fig. 9).

Note that if the router is a leaf node of the Steiner

tree (that is, the io-set
has only one element), the

packet is no longer forwarded to other routers.

If the router is a DR
(that is, the delivery-set is

not empty), then it must deliver the packet to one

or more hosts connected to this router by using the

delivery set information, for ®nal delivery to the

applications it is directly serving (i.e., for which it

is the closest multicast router). For example, when

R2receives a packet through io link 2, it forwards

the packet to application A2running on host H9
(Fig. 9). We reiterate that only GR
is responsible

for computing the CO Steiner tree for G
and for

performing any updates. The Routers(G) operate

in an extremely simple manner and maintain only

minimal information. This contributes to the

scalability of CSM.

3.4. Joining the discussion session

Suppose a new application,
Aj, on host
Hj
wishes to join a discussion group. Aj®rst queries

its area MSD server to determine if there is a

discussion group of interest by scanning the entries

in MSD. Assume that
Ajis interested in joining

discussion group
G.
Ajthen obtains the relevant

Entry from MSD. It is now necessary for Ajto join

the discussion session
G
by having its nearest

multicast router, DRj, join the current shared tree

via a path to a router, Rg, that is already a member

of the Tree(G).

We address the issue of how this method is de-

termined later.

Our Sparse Set Join proposes that
GR
simply

compute the shortest path from the new joining

node to any node in the current shared tree. Note

that this computation is also used in the Takahashi

Matsuyama heuristic and in fact would generally

require only a lookup as
GR
keeps track of all

shortest paths between nodes. In [43], Waxman

proposed a parametrized weighted greedy algo-

rithm to determine a path for joining a new node

to an existing source based tree. The algorithm

minimized the following function over all nodes v

in the existing tree:

W
v
1 А w Г
distance newnodeY v

w Г
distance vY source

where the parameter w ranges from 0 to 0.5. Our

Sparse Set Join heuristic is identical to this with

w
0.

Our Dense Set Join simply connects to the ex-

isting tree by trying the shortest path to the
GR

until a node of the current tree is hit. Note that this

is like the other extreme of the weighted greedy

heuristic
w
0X5
or joining in naive multicast

routing [14] (where one determines the shortest

path from the source) with GR playing the role of

source, but is actually more similar to the join in

CBT (®nd the shortest path to the core router as

target) because it is receiver initiated with
GR as

the target.

There are many interesting join mechanisms

that have been proposed for dynamically adding

nodes to existing trees or for dynamically modi-

fying Steiner trees on-line. See for instance Ka-

direХs paper [25] on his Geographic Spread

Dynamic Multicast, or work on dynamic Steiner

tree problems [8,22]. Using AAR, we could, in

fact, choose any of these algorithms for dynami-

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

47

cally adding (or deleting) nodes to the current

tree.

Sparse Set Join (Fig. 10)

·
Ajsends a A_GA_Join_sparse (Aj, DRj) request

message to GA.

·
GA
checks whether
Ajis authorized to join

group G, and if so, it sends a GA_GR_Com-

pute_src_route(DRj) request message to GR.

·
GA sends back a response to Ajusing a GA_A_

Join_sparse (yes/no) reply message.

·
If the reply is `yes',
GR
computes the shortest

path to a current multicast router in the Tree(G),

and updates the io-sets of the relevant routers.

For example, in Fig. 10, the GR (router R2), in-

forms router
R8that its neighboring routers in

Tree(G) are R7and R3. Router R3will translate

this information into its local io-set link infor-

mation {1, 3}.

The primitive messages that need to be imple-

mented for a Sparse Set Join are:

1.
Join_sparse request/reply (between an applica-

tion and GA),

2.
Compute_src_route request/reply
(between GA

and GR), and

3.
Ioset_distribution (from GR to R, no reply nec-

essary).

Dense Set Join. We do not present the Dense Set

Join algorithm in detail as it is straightforward.

The primitive messages that need to be imple-

mented for a Dense Set Join are:

Fig. 10. Sparse join.

1.
Join_dense_request (from an application to its

designated router, no reply necessary),

2.
Join_dense_request (from router to router, no

reply necessary), and

3.
Application_joining_dense (from router to rout-

er, no reply necessary).

3.5. Leaving the discussion session

The method of leaving a discussion group can

depend on the exact information that
GA
is

maintaining about the discussion group. The exact

algorithms for the leave could also depend on the

dynamic tree modi®cation algorithm being used.

Although we have not discussed the details, for

sparse set operation,
GA
would maintain full in-

formation on applications and their closest multi-

cast routers. For dense mode operation, however,

GA
need not maintain information on applica-

tions. We assume that routers would poll to de-

termine if members on their directly connected

LAN have dropped out.

For the sake of brevity, we only describe the

primitive messages we have used in implementing

leave.

Sparse Set Leave. The primitive messages that

need to be implemented for a Sparse Set Leave are:

1.
Leave_sparse request
(from an application or

DR to the GA, no reply necessary),

2.
Delete_from_tree sparse request
(from GA to

GR, no reply necessary), and

3.
Ioset_distribution (from GR to R, no reply nec-

essary).

Dense Set Leave. The message primitives needed to

implement the Dense Set Leave are:

1.
Leave_dense request message (between an appli-

cation and its designated router),

2.
Leave_dense poll message (between DR and the

corresponding application), and

3.
Node_leaving_dense request
message (between

routers).

3.6. Computing an updated CO Steiner tree

So far, ongoing operations and joining and

leaving the discussion group have been described.

It is clear that as this continues, the resulting

48

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

shared tree will perhaps no longer be a `good' tree

for the multicast operations.

Recall that the initial Entry in the MSD server

could have contained expected trac information

for the group
G. The
GR, however, is clearly

equipped to monitor this trac and could have a

much better idea of the trac situation on an

ongoing basis. GR can use this and any informa-

tion from the application using AAR to determine

whether the current tree still meets performance

requirements.

We did a simple study that shows the bene®t of

recomputing the CO Steiner tree periodically after

a certain number of join/leave events. We assumed

that a new member was added to the tree at the

nearest node to the current tree. Group member-

ship was modi®ed (a member was added or re-

moved) randomly but so as to approximately

maintain the size of the group. We compared the

case in which the shared tree was then reset to the

CO Steiner tree (based on the heuristic algorithm)

after some number of events as compared with a

tree that was not reset. The ineciency measures

the percent increased weight of the current shared

tree vs. a CO Steiner tree found from the heuristic.

In Fig. 11, the upper graph is the result of not

resetting the tree (naive), and the lower graph

Fig. 11. Eect of periodically computing CO Steiner tree.

(recon®gured) resets every 10 modi®cations to the

CO Steiner tree. The graphs are averages of 200

runs. Note that periodic transitions to a new tree

reduces the average ineciency from around 24

percent to about 3%. These results are similar to

what others have reported [8,9]. In [9], using our

sparse join and leave algorithm for the 800-node

graph discussed in Section 2 with a conference size

of 10, the ineciency approaches 20% only after

about 50 join/leave events. Thus, resetting to the

CO Steiner tree need not be an extremely frequent

operation.

Based on the fact that computing the CO

Steiner tree can be done fairly fast and that dis-

tributing the io-set is also fairly ecient, we believe

that switching to a more optimal tree periodically

is feasible.

We thus propose that after a certain number of

events, GR recompute the CO Steiner tree. We call

this the proposed Tree(G) tree, as compared with

the current Tree(G). If the dierence between the

two is above a threshold (ineciency of 20% for

example), then the gatekeeper initiates an algo-

rithm SWITCH to switch from the current tree to

the proposed tree. Notice that the computation of

proposed
trees is done asynchronously with other

activities, and can be done in the background.

Although joins and leaves could be acknowledged

during a switch, we only discuss the case where

joins and leaves are queued until the SWITCH is

completed.

Assume therefore that the proposed Tree(G) is

suciently better than the
current Tree(G). The

GR then initiates the SWITCH tree algorithm de-

scribed in Section 3.7.

3.7. The Switch Tree algorithm

The Switch Tree algorithm is intended to switch

over from the current shared tree to the proposed

CO Steiner tree.

The basis of the SWITCH Tree algorithm is

that during the transition to the new tree, routers

will be forwarding messages on both the current

and the proposed tree. This provides a fault-tol-

erance to packets not being propagated correctly

for some reason during the transition period. See

Fig. 12.

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

49

Fig. 12. Switching from current to proposed tree.

Routers on the
current tree
will be termed

Current_G routers, and routers on the
proposed

tree will be termed Proposed_G routers. Of course,

this set may have a large intersection. Notice that a

proposed router that is also a current router might

have a dierent io-set in the proposed tree. Call a

router that is a current router but will not be a

proposed router a Conly
router. A router that is not

a current router but is a proposed router is a Ponly

router. A router that is both a current and a pro-

posed router is a C and P router. For example, in

Fig. 12, R3and R4are Conly
routers, R5is a Ponly

router, and R1, R2, R6are C and P routers. The

SWITCH algorithm operates as follows.

1.
GR
sends
io-set
information to all proposed

routers using GR_R_Ioset_distribution mes-

sage as discussed previously in Section 3.2.

Ponly
routers create a new
Rentry, whereas
C

and P routers maintain two entries, one reЇect-

ing the current io-set and the other reЇecting the

proposed io-set. For instance, the io-set for R5,

which is a Ponly
router, is {1}. The io-set for R4,

which is a Conly
router, is {1}. R6, which is a C

and P router, has two
io-sets: {1,2,3,4} for the

current tree and {1,2} for the proposed tree.

2.
GR
sends a GR_R_Start_switch message to

routers associated with group
G. Note that

these will be both current and proposed routers.

For reliability, this message is sent via TCP.

3. On receiving a GR_R_Start_switch message for

G over an incoming link, a Conly
and a Ponly
rout-

er propagates the message as usual on all other

io links. The ®rst C and P router getting a data

packet needs to duplicate the packet and propa-

gate it on each of the two trees by checking each

of the two current and proposed RentryХs and act-

ing on each. It will also mark the data packet

with an indication that it should go on the cur-

rent or proposed tree. Subsequent C and P rout-

ers will simply propagate the packet on the

correct tree based on the data packet marking.

A simpler scheme, which we implement, does

not require data packets to be identi®ed and

marked but rather has each C and P router sim-

ply forwarding the packets using both RentryХs.

This could potentially create some cycles in the

graph during the switching time period but the

cycles will be broken anyway after the switching

is over and the circulating packets will soon be

eliminated using the TTL value of IP packets.

4. After a sucient time has elapsed such that all

routers have received the message, GR sends an

GR_R_End_switch message to routers of

group G.

5. On receiving an GR_R_End_switch message, a

Conly
router deletes its Entry. A C and P router

deletes the Entry corresponding to current tree.

Basically, the period between GR_R_Start_

switch and GR_R_End_switch is when multicasts

are being carried by both the current tree as well as

the proposed tree. Other algorithms are also pos-

sible for synchronizing the switching period more

closely if accurate global clocks at each router are

assumed to exist.

The message primitives needed to implement

the switch tree algorithm are:

1.
Ioset_distribution
message (from
GR
to
Rout-

ers(G))

2.
Start_switch request message (from GR to Rout-

ers(G))

3.
End_switch request message (from GR to Rout-

ers(G))

4. Gatekeeper failures and inter-domain operations

In this section we brieЇy outline our approach

to handling failures during the operation of the

50

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

CSM protocol. We also discuss extensions that are

needed to the protocol for inter-domain opera-

tions.

4.1. Gatekeeper failures

In order to make the CSM protocol tolerant to

faults, we follow the methodology discussed in [19]

in which a set of software facilities are provided to

help an application raise its level of fault tolerance

in terms of the availability and consistency of the

data. This approach to fault tolerance is dierent

than simply providing, for instance, a primary and

secondary domain name server. In CSM, the role

of the gatekeeper (GA and GR) is very important.

We advocate using a modi®ed primary site ap-

proach to sofware fault tolerance in which the

service that is to be made fault tolerant is repli-

cated on one or more backup nodes. Thus we

would implement a primary and backups for both

GA and GR. The primary periodically check-

points its state on the backups, and when the

primary fails, a backup takes over as the primary.

This approach has been successfully used in many

practical distributed computing environments

using reusable components [20] that provide the

needed fault tolerance without extensive progam-

ming eort. The computational overhead for

providing this kind of fault-tolerance varies from

1% to 7% [20]. More details on our approach can

be found in [2]. Note that the backup, by watching

its primary, relieves an application from having to

itself try the secondary when the primary fails. The

burden of implementing the fault tolerance is thus

not on the application.

4.2. Inter-domain operations

Our approach to extending CSM to operate in

an inter-domain environment is to duplicate and

coordinate all the basic functions on an as needed

basis in all the domains that have members of

group G. There is a primary domain and a number

of secondary domains each with a MSD, GA and

GR. The entities in the secondary domains are

created
on demand
and they go away if the no

members remain in the domain. GR in each sec-

ondary domain computes its own tree and grafts

that tree to the primary tree through the border

router of the domain. Due to space considerations,

we refer the interested reader to [2] for additional

details.

5. Mobile CSM

As discussed in the introductory sections, one of

our goal in designing CSM was to make it fairly

easy to develop a multicast protocol that involves

applications that are mobile. See also [34]. We now

show how our CSM architecture and the primitive

messages we have previously de®ned can be ex-

tended to an architecture for mobile CSM (called

MCSM in this section). For concreteness of the

discussion, imagine a mobile application to be an

application that is running on a computer in a car

or running on a portable pc that an individual is

carrying around.

The logical distinguishable entities that were

able to send and receive messages in CSM were

Application,
Router,
MSD,
Designated Router,

Gatekeeper Application, and
Gatekeeper Router.

We have one new logical entity in CSM that we

term
MobileSupportStation
(Mss). An
Mss
is a

®xed entity on the network that provides necessary

support to a mobile application. An Mss
can be

equated to a Base Station in the cellular architec-

ture. Our protocol related to hando is based on

the assumption that there is substantial overlap-

ping between adjacent cells [16], such that a mobile

may be assumed to have adequate communication

with more than one base station during transition

from an old to a new base station.

The Mobile CSM protocol will be described in

reference to the architecture given in Fig. 13, in

which there are several mobile support stations,

connected to a ®xed packet-switched backbone

network. Each cell (represented by a hexagon) has

a
Mss which acts as the access point for the mo-

biles in the cell. In Fig. 13,
Mjis a mobile host

running an application
Ajand the mobile host

accesses the backbone network through the mobile

support station Mss1. As long as the mobile host

Mjremains in the cell of
Mss1, it interacts with

Mss1exactly in the same way as host Hjdoes with

its designated router DRjin the non-mobile con-

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

51

Fig. 13. Architecture for mobile CSM.

ferencing mode. As the mobile Mjstarts to move

away from
Mss1, there is a period, when it has

adequate communication [16] with both Mss1and

say, Mss2, which is a neighbor of Mss1(Fig. 14).

During this hando period, Mjwill inform the

new mobile support station Mss2that it wants to

join the multicast session, and that control infor-

mation will be propagated through the routers

resulting in the addition of a new branch from R5
to Mss2in the existing shared tree (Fig. 14). Note

that during this hando period, the mobile Mjhas

two paths, one through
Mss1and the other

through Mss2, for receiving (sending) packets from

(to) the multicast session in progress. Thus the

Fig. 14. Redundant connections during hando.

notion of redundancy is used for reliable delivery

of packets to the mobile station.

After the mobile
Mjmoves away from
Mss1,

and starts to communicate only through Mss2, the

control information is propagated through the

routers, resulting in the removal of the branch

R5±R6±Mss1(Fig. 15).

Thus the multicast tree gets altered dynamically

as the mobiles move in and out of cells. In par-

ticular during hando, the existing tree is aug-

mented with new branches to provide redundancy,

and after hando is over, unnecessary branches are

pruned o the multicast tree.

Additional details of the Mobile CSM archi-

tectue can be found in [2]. Although the logical

design is straightforward using our approach,

without an implementation and experimentation,

it is not possible to assess overhead and eciency

issues. We expect that the level of dynamicity of

members leaving and joining will aect the e-

ciency of Mobile CSM. For example, if mobiles

are very highly mobile, it could be wise to antici-

pate this and prepare all neighboring cells for re-

ceiving the multicast by setting up a tree that

pretends that there are mobiles in all adjacent cells.

6. Implementation

Using the CSM design, a virtual network called

Msbone was developed for use in the Internet. In

Fig. 15. Switching to a new cell after hando.

52

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

the Msbone, group admission and routing is

handled in a manner described by the CSM pro-

tocol. The Msbone supports both CSM style and

traditional multicast applications and can inter-

operate with the Mbone. In our implementation,

we developed two major software components: (1)

umsd
(user multicast session directory) and (2)

msrouted (multicast Steiner routing daemon). The

umsd is the user's interface to CSM and permits

users to create (and delete) group sessions and join

and leave sessions, and to launch (multicast) ap-

plications such as audio/video conferencing tools.

The msrouted implements the routing, communi-

cations, and GR functions of CSM. In this section,

we discuss our CSM implementation and discuss

how multicast applications can be implemented

over CSM. Since Msbone has been implemented

using UDP tunnels and corporate ®rewalls do not

let UDP trac in or out, our experimentation has

so far been limited to within the Lucent intranet.

Hence performance comparison with MBone has

not yet been done.

To form the virtual network, each LAN selects

one host to serve as the designated ``multicast

router''. This host runs msrouted. Msrouted is

responsible for forwarding multicast packets to

and from the LAN. MsroutedХs exchange multi-

cast packets by encapsulating them within unicast

packets. Two msroutedХs which exchange packet

via this encapsulation method are said to be con-

nected by a tunnel. The collection of LANs,

msrouted's, and tunnels constitute the Msbone.

Note that in our implementation, there is a one-to-

one identi®cation with a CSM capable LAN and a

msrouted. See Fig. 16.

6.1. Msbone applications

Unlike other multicast schemes, the CSM de-

sign allows a multicast application to assert a great

deal of inЇuence over the group via the Gatekeeper

Application concept. Applications designed for

CSM can utilize this additional inЇuence for im-

proved operation. However, a large base of ap-

plications already exist that do not incorporate

CSM style concepts. Msbone was designed to

support both types of applications.

Fig. 16. Msbone architecture.

In the CSM model, there is the notion of a

Gatekeeper Application, GA, that controls ad-

mission to the group and inЇuences the group's

routing. Typically the group's initiator acts as or

initiates the GA that registers the group with

MSD. The GAХs (unicast) address is advertised

along with the group address and to join a group,

a user sends a request (via unicast) to the GA (see

Fig. 17). If the request is approved, the GA must

inform the Gatekeeper Router so a route will be

established to the new member (see Fig. 18).

While the gatekeeper concept adds to the

complexity of creating and joining a group, it also

provides substantial advantages. The gatekeeper

Fig. 17. Registration of a new session.

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

53

Fig. 18. Joining an existing session.

application can assert control over group mem-

bership. In many applications, there is a desire to

know and perhaps restrict the group membership.

With the GA concept, membership control is

managed cooperatively within the network and the

application can be assured that the routes are be-

ing computed based only on the valid members.

The GA can also control when new members are

allowed to join the group by delaying when the

join is sent to the network. This allows the multi-

cast application to enforce a rule that only allows

new members to enter at speci®ed times, if so de-

sired. In addition to membership control, the GA

can inЇuence routing decisions. At any time the

GA can instruct the network to recompute the

routes or even switch to an entirely new algorithm

for computing routes. In a multicast for two

speakers, the GA could ®rst optimize the routes

for the initial speaker and later change the routes

to optimize for the second speaker using AAR.

This GA functionality can be incorporated into

the multicast application itself, it can be handled

by a separate GA process, or it can be assigned to

one of several default Gatekeeper Applications

that run at well known addresses throughout the

network.

6.1.1. Applications with built-in gatekeepers

An application designer could chose to build

the Gatekeeper Application functionality directly

into the multicast application code. A simple

command line option could indicate the applica-

tion is to be run in `gatekeeper mode'. When the

application is run in non-gatekeeper mode, it could

automatically generate a join request and send it to

the `gatekeeper mode' application. This join pro-

cedure can occur without the user's knowledge or

could pop up windows asking for information

such as passwords to complete the join. Some

applications naturally have the concept of a gate-

keeper and these concepts are not only easy for the

application designer to implement, but also highly

desirable. For example, an application to hold

committee meetings may naturally want to desig-

nate one user as the chairperson and the chair-

person's application should allow control over

who attends the meeting.

6.1.2. Separate gatekeeper application processes

Some application designers may ®nd it desirable

to locate the GA functions in a separate process or

program. Typically the group's initiator would

start this GA process. The application could be

designed so it contacts the GA process automati-

cally or the user might ®rst have to run a join

process or wrapper that only starts the main ap-

plication after the join has succeeded. The GA

process can de®ne its own packet formats and

control scheme or it could make use of Msbone

GA control packet formats. The Msbone de®nes

packet formats for an
open,
closed, and
secure

admission control scheme. Open format allows

any host to join, closed restricts membership to a

set of hosts, and secure requires a password to join

the group. No restrictions are placed on how ad-

mission control is to be handled. The only re-

quirement is that the GA and potential members

have some agreed upon message format for joining

the group.

6.1.3. Support for standard applications

Applications such as vat, vic, wb, and nevot

[23] have become network standards for multicast

conferences. These type of applications do not

support the concept of a GA, but can still be used

on the Msbone. Several default Gatekeeper Ap-

plications can run at well known sites and can

54

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

serve as the GA for any application that does not

wish to provide its own GA. This allows non-

CSM applications to operate on the Msbone and

bene®t from Msbone admission control. An ap-

plication launching program is used to ®rst con-

tact a default GA (or ®rst create the group

through the GA). Once the GA has been con-

tacted and a join succeeds, the launching program

can exit and the application is run as it normally

would be. When creating the group, the default

GA can be instructed to use open, closed, or secure

admission control. This allows tools such as vat to

make use of the Msbone's admission control if

desired.

Mbone users will be accustomed to launching

multicast applications via the sd or sdr tool.

Msbone has a similar tool,
umsd
for User Multi-

cast Session Directory (see Fig. 17). With umsd a

user can create a group and join a group in a

fashion nearly identical to that of Mbone and sd.

The user need not even be aware of the GA con-

cept. The umsd tool handles all the details relating

to the GA and then starts the multicast applica-

tion.

6.1.4. Designing a gatekeeper application

Application designers that want to design their

own GA may be uncomfortable having to deal

with the network level multicast issues. Admission

control is something the application designer is

likely to be aware of, but multicast routing is often

not an area of expertise for the application de-

signer. The GA is responsible for communicating

membership to the network (via the Gatekeeper

Router concept of CSM) and application designers

may ®nd this troublesome.

To solve this problem, Msbone provides de-

signers with a network interface library. Adding a

member to the group is as simple as calling a

function called `addmember'. Various routing al-

gorithms are listed by number and selected via a

`recomputetree' function. Much the way a socket is

controlled by simple Їags, multicast routing can

also be controlled by well-de®ned functions and

option Їags. The application designer need not

understand the complexities of the multicast

routing problems and need only call functions

from the multicast control library. We omit the

details of this control library.

6.2. Msbone routing

Since modifying existing routers is often not

practical, Msbone uses host software to perform

routing tasks. A LAN selects one host to run

msrouted. Each msrouted is con®gured to ex-

change packets with a ®xed set of remote

msrouted's. These remote sites are speci®ed in a

con®guration ®le that is read when msrouted is

started.

The current release of msrouted runs in user

level space without requiring any special permis-

sions. Better performance can be achieved by

running with superuser privileges, but the proto-

type was chosen to run without this for easier

initial deployment. Readers familiar with encap-

sulation methods should note that this requires

that the msrouted tunnels encapsulate multicast

packets in IP and UDP headers rather than just IP

headers. Changing to only IP encapsulation (and

thus also superuser privileges) is primarily a tech-

nicality and presents no fundamental changes to

the Msbone design.

Msrouted is logically divided into four modules:

(1) Tunnel Message Handler, (2) Control Message

Handler, (3) Gatekeeper Router Module, and (4)

Topology Learning Module. See Fig. 19.

Fig. 19. Msrouted architecture.

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

55

6.2.1. Tunnel message handler

The Tunnel Message Handler focuses on

reading and writing local multicast packets and

exchanging packets with other msroutedХs. Once

an application has joined a group via the GA and

a route has been constructed, the application

simply writes a multicast packet onto the LAN.

The multicast packet is received by all local group

members as well as msrouted. Msrouted looks up

the groupХs entry in the route table and deter-

mines which adjacent msrouted's should receive

the packet. The multicast packet is encapsulated

within an IP and UDP header and sent (unicast)

to the appropriate adjacent msrouteds. When an

encapsulated packet arrives at an msrouted,

msrouted checks the multicast address of the en-

capsulated packet and forwards it to the appro-

priate (adjacent) msrouteds. If there are local

group members, msrouted decapsulates the packet

and multicasts it locally on the network. Any lo-

cal members receive this multicast as if they were

on the same LAN as the original sender. See

Fig. 20.

6.2.2. Control message handler

The Control Message Handler module of

msrouted will receive route updates from Gate-

keeper Routers. In CSM terminology, these route

updates are referred to as io-sets. An io-set
is as-

Fig. 20. Multicast packet forwarding in Msbone.

sociated with a particular group and tells the

msrouted which neighboring msrouteds are part of

a groupХs multicast routing tree. Route entries may

be explicitly cleared by receiving a NULL
io-set

for a group or the entry will expire if refresh

messages are not periodically received. The control

unit is responsible for processing
io-sets, main-

taining the route table, and periodically expiring

old entries.

6.2.3. Gatekeeper router module

Recall that CSM designates a speci®c router

(per group) known as the Gatekeeper Router (GR)

that computes and distributes the route entries (io-

sets) for that group. As discussed previously, for

scalability, any msrouted may act as a
GR
and

may serve many groups simultaneously. The

choice of gatekeeper router is typically the nearest

router to the GA that registers the group, but can

really be any router in the Msbone. The Gate-

keeper Router Module performs these functions. It

receives group membership updates from the GA

and computes a route accordingly. This module

implements application assisted routing and a

number of shared tree heuristics can be used to

compute the tree. Each algorithm is associated

with a code-number and the GA decides which

algorithm number to use. These modules are de-

signed so that additional algorithms can easily be

added to msrouted. Adding a new algorithm is as

simple as adding the algorithm function name to

an included ®le, recompiling, and linking in the

object code for the function.

6.2.4. Topology learning module

Since CSM is based on computing CO Steiner

trees, topology information about the network is

essential. This fourth msrouted unit is responsible

for maintaining topology information. The precise

algorithm for doing this is not fundamental to the

design and could be replaced by OSPF. All that is

required is that the Topology Learning Module

provide up-to-date topology information to the

Gatekeeper Router Module for computing the

shared trees. The Topology Learning Module also

noti®es the Gatekeeper Router Module in the

event of topology changes.

56

6.3. Interoperation

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

DVMRP employs to prune and regrow trees is

not practical for sparse groups. MOSPF requires

It is increasingly unlikely that any one multicast

algorithm/architecture will gain complete accep-

tance. Interoperation between algorithms is es-

sential. The current Msbone can interoperate with

any other system such as Mbone in the following

basic manner. An Msbone `gateway' runs on a

LAN with a non-Msbone router. For example, the

Msbone gateway can run on any LAN in the

Mbone. The gateway acts as a proxy group

member. If any Msbone host joins a Mbone

group, the gateway also joins the same group.

The non-Msbone algorithm will deliver packets to

the gateway just as it would any other host. The

gateway then routes the packets onto the Msbone

as if it had generated the packet. Packets leave the

Msbone by arriving at the Msbone gateway and

then being multicast onto the gatewayХs LAN

where the other (non-Msbone) multicast router

will see the packets and distribute them as if they

had been issued by any local group member. In a

similar way, Msbone applications could allow

non-Msbone participants to join Msbone sessions.

An initial version of Msbone is operational in

the Bell Labs research network, and can be used to

create new multicast sessions or join existing ses-

sions in a manner similar to Mbone. Each session

can run Mbone applications, namely, vat, vic, and

wb [23] at present. Work is ongoing to develop a

more complete prototype that can be used for

experimental studies.

7. Related protocols

Two main protocol architectures have been

developed for dense multicast groups. DVMRP is

an extension of a distance vector unicast protocol

and MOSPF is an extension of a link state uni-

cast protocol. DVMRP has been successfully

deployed over the Mbone. Both of these proto-

cols were designed for multicast routing using

source-based trees where the unique sender is the

source. The problems with these protocols with

respect to scaling and use for sparse groups are

well known and have been discussed by several

authors. In particular, the mechanism that

that each router must receive and store mem-

bership information for each multicast group and

requires that each router compute the delivery

tree for each group. Thus, the information stor-

age and processing requirements for MOSPF

cause diculty when scaling to a large number of

multicast groups. It can be seen that CSM does

not have these scaling problems as it uses a

shared tree and handles joins and leaves dier-

ently from these protocols.

Two major protocol architectures have been

proposed for sparse multicast groups. CBT pro-

poses the use of a shared tree centered at a core

[5]. CSM is similar to CBT in that it scales in the

same manner as CBT and also uses a shared tree

for the group multicast. However, CSM precisely

de®nes how the shared tree is set up and modi®ed

as necessary by the gatekeeper for the group. In

contrast, CBT does not discuss the placement of

the core and initially suggests to either use stati-

cally con®gured cores or to have the nearest router

to a host act as a core. It should be clear that

although the notion of a gatekeeper in CSM is

somewhat akin to a core router, the gatekeeper

plays the crucial role in CSM of computing the

close-to-optimal shared tree and is unlikely to be a

`core router' in the sense of CBT. Furthermore,

the fact that the initiator of a group is usually the

GA for the group and its DR is the GR for the

group implies that any router can become a GR.

Therefore, for a large number of multicast groups,

the gatekeepers would likely be distributed uni-

formly across the network of multicast routers,

and there is no single router which will become the

bottleneck. This is the key to the scalability of

CSM.

A second major dierence in CSM as compared

with CBT is that CSM discusses in detail how to

switch to another more optimal tree and provides

a detailed method as to how to do so reliably.

Other dierences include details on how joins and

leaves are implemented.

CSM also diers from CBT in its handling of

failure recovery. CBT attempts to integrate failure

recovery directly with the CBT protocol. In con-

trast, CSM separates the failure recovery issue into

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

57

two parts. Failures of gatekeepers are handled by a

mechanism discussed in this paper. Failures of

links and nodes, on the other hand, are assumed to

be handled by the network of multicast routers in a

manner similar to the way failures are currently

handled by the Internet routers. (See for instance

our implementation of the msrouted Topology

Learning Module.) Thus, multicast routers would

exchange link state information assuming an

OSPF type of protocol was implemented at that

level. Finally, CSM de®nes extensions to multiple

administrative domains.

The second major architecture that has been

proposed for sparse multicast groups is PIM [12].

PIM describes the use of rendezvous points (RP's)

that initially allow the creation of a shared tree.

PIM then discusses how to move to a shortest path

source based tree if desired. In contrast, CSM

starts out with a CO Steiner tree (if an initial set of

participants is known) and then continuously

evaluates the membership set to see if it is wise to

move to another shared tree. CSM precisely de-

®nes how the shared tree is initially setup by the

gatekeeper and CSM also clearly allows for a

choice of shared tree algorithms to be used by a

gatekeeper. CSM also diers from PIM in that the

multicast routers in CSM have a simpler archi-

tecture for ongoing multicast sessions. CSM only

uses the multicast address and the ioset to deter-

mine how to route a packet (it uses a delivery set if

a locally attached host wants that packet). In

contrast PIM requires more processing by the

routers, requiring them to maintain information

on incoming and outgoing links for each group as

well as the RP addresses. Furthermore, additional

complexity is entailed by having the routers re-

sponsible for switching from a shared tree to a

source-based tree. Although PIM describes the use

of a shared tree, it is clearly designed to quickly

switch to a source-based tree. The premise of CSM

is to always be operating on an appropriate shared

tree.

PIM is also dierent from CSM in separating

the senders from receivers. Although for ®xed

sender sources this may be advantageous, there is

no simple way in PIM of converting a sender into a

receiver in an existing multicast tree. Therefore,

PIM may have trouble with applications such as

conferencing and chat groups, in which the senders

and receivers interchange their roles very often in

the middle of a session.

CSM, as contrasted with PIM and CBT sup-

ports application assisted routing and clearly dis-

cusses extensions that allow it to be used in a

mobile environment.

8. Conclusion and future work

In this paper we presented a Їexible multicast

routing protocol targeted towards conferencing

and online discussion groups. We have discussed

how this new protocol architecture diers from

other architectures previously proposed. Some of

the key ideas of the paper are the distributed dy-

namic computations of the CO Steiner trees for

the multicast groups and the support for applica-

tion assisted routing, the fault-tolerant transition

from an old tree to a new tree, extension of the

basic protocol to an inter-domain environment,

and the introduction of the watchdog concept to

make the basic protocol robust in a hostile net-

work environment. The basic protocol primitives

can be also be used to support mobile multicast-

ing. Handos in mobile CSM are also handled in a

novel way as compared to other mobile protocol

approaches.

Our current implementation of CSM oers the

following features:

·
Group admission control in cooperation with

the network.

·
Application
dependent
group
admission

schemes.

·
Ability for each group to select its own routing

algorithm.

·
Application driven recomputation of routes.

·
Application control over adjusting routes for

new members.

·
Ability to easily add new routing algorithms to

the system.

The current implementation is local to the Lu-

cent intranet. In future work, we intend to deploy

Msbone more broadly and do a detailed perfor-

mance analysis.

We believe a key lesson learned from the con-

struction of the Msbone is that the application and

58

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

network can be integrated in a simple way. This

allows the application to gain better performance

and prevents situations where the network must

guess the application's desires.

Acknowledgements

The authors are grateful to Amritansh Raghav

for several early discussions on multicasting.

Appendix A. List of abbreviations used in the paper

Abbreviation
Expansion

AAR
Application-Assisted Routing

BGP
Border Gateway Protocol

CBT
Core-Based Tree

CO
Close-to-optimal

CSM
Conference Steiner Multicast

DR
Designated Router

DVMRP
Distance Vector Multicast

Routing Protocol

GA
Gatekeeper Application

GR
Gatekeeper Router

Mbone
Multicast Backbone

MOSPF
Multicast Open Shortest Path

First

MSBone
Multicast Steiner Backbone

MSD
Multicast Sessions Directory

MSS
Mobile Support Station

OSPF
Open Shortest Path First

PIM
Protocol Independent Multicast

RTP
Real-Time Protocol

References

[1] S. Aggarwal, S. Paul, A Їexible protocol architecture for

multi-party conferencing, in: Proceedings of the

ICCCNХ96, October 1996, pp. 81±91.

[2] S. Aggarwal, S. Paul, D. Massey, D. Calderaru, A Їexible

protocol architecture for multi-party conferencing: from

design to implementation, Technical Memorandum, Lu-

cent Technologies, April 1998.

[3] S. Aggarwal, A. Raghav, DUALCAST: a scheme for

reliable multicasting, in: Proceedings of the ICNPХ94,

October 1994, pp. 15±21.

[4] T. Billhartz, J.B. Cain, E. Farrey-Goudreau, D. Fieg, S.G.

Batsell, Performance and resource cost comparisons for the

CBT and the PIM multicast routing protocols, IEEE

Journal on Selected Areas in Communications 15 (3) (1997)

304±315.

[5] A.J. Ballardie, P.F. Francis, J. Crowcroft, Core based

trees, in: Proceedings of the ACM SIGCOMM, 1993.

[6] K. Bharat-Kumar, J.M. Jae, Routing to multiple desti-

nations in computer networks, IEEE Transactions on

Communications COM-31 (3) (1983) 343±351.

[7] T. Ballardie, R. Perlman, C. Lee, J. Crowcroft, Simple

scalable internet multicast, Technical Report, University

College, London, April 1999.

[8] F. Bauer, A. Varma, ARIES: A rearrangable inexpensive

edge-based on-line Steiner algorithm, IEEE Journal on

Selected Areas in Communications 15 (3) (1997) 382±

397.

[9] D. Caldararu, Heuristic Steiner trees for networks with

large numbers of multicast conferences, M.S. Thesis,

Department of Computer Science, SUNY, Binghamton,

August 1997.

[10] J. Donahoo, K.L. Calvert, E.W. Zegura, Center selection

and migration for wide-area multicast routing, Journal of

High-Speed Networks 6 (2) (1997).

[11] S. Deering, Host Extensions for IP multicasting, RFC

1112, May 1988.

[12] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C. Liu,

L. Wei, An architecture for wide-area multicast routing,

in: Proceedings of the ACM SIGCOMM, August 1994,

pp. 126±135.

[13] S. Deering, D. Cheriton, Multicast routing in datagram

internetworks and extended LANs, ACM Transactions on

Computer Systems (May 1990) 85±111.

[14] M. Doar, I. Leslie, How bad is naive multicasting, in:

Proceedings of the IEEE INFOCOM, 1993, pp. 82±89.

[15] H. Eriksson, Mbone: the multicast backbone, Communi-

cations of the ACM (August 1994) 54±60.

[16] L.G. de R. Guedes, M.D. Yacoub, Overlapping cell area in

dierent fading conditions, in: Proceedings of the 1995

IEEE 45th Vehicular Technology Conference, July 1995,

pp. 380±383.

[17] S. Hakimi, Steiner's problem in graphs and its applications,

Networks 1 (1971) 113±133.

[18] H. Holbrook, D. Cheriton, IP multicast channels: EX-

PRESS support for large-scale single-source applications,

in: Proceedings of the ACM SIGCOMM, August 1999,

pp. 65±78.

[19] Y. Huang, C. Kintala, Software implemented fault toler-

ance: technologies and experience, in: Proceedings of the

23rd International Symposium on Fault Tolerant Com-

puting (FTCS-23), June 1993, pp. 2±9.

[20] Y. Huang, C. Kintala, Software fault tolerance in appli-

cation layer, in: M. Lyu (Ed.), Software Fault Tolerance,

Wiley, New York, 1995, Ch. 10.

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

59

[21] F.K. Hwang, D.S. Richards, Steiner tree problems, Net-

works 22 (1992) 55±89.

[22] M. Imase, B.M. Waxman, Dynamic Steiner tree problem,

SIAM Journal of Discrete Math 4 (3) (1991) 369±384.

[23] V. Jacobson. Multimedia conferencing on the internet,

Tutorial 4, ACM SIG-COMM 94, August 1994.

[24] R.M. Karp, Reducibility among combinatorial problems,

in: R.E. Miller, J.W. Thatcher (Eds.), Complexity of

Computer Computations, Plenum, New York, 1972.

[25] J. Kadirire, G. Knight, Comparison of dynamic multicast

routing algorithms for wide-area packet-switched (ATM)

networks. in: Proceedings of the IEEE INFOCOM, 1995,

pp. 212±219.

[26] L. Kou, G. Markowski, L. Berman, A fast algorithm for

Steiner trees, Acta Informatica 15 (1981) 141±145.

[27] V.P. Kompella, J.C. Pasquale, G.C. Polyzos, Multicasting

for multimedia applications. in: Proceedings of the IEEE

INFOCOM, 1992, pp. 2078±2085.

[28] V.P. Kompella, J.C. Pasquale, G.C. Polyzos, Multicast

routing for multimedia communication, IEEE/ACM

Transactions on Networking 1 (3) (1993) 286±292.

[29] S. Kumar, P. Radoslavov, D. Thaler, C. Alaettinoglu, D.

Estrin, M. Handley. The MASC/BGMP architecture for

inter-domain multicast routing, in: Proceedings of the

ACM SIGCOMM, August 1998, pp. 93±104.

[30] J.J. Garcia-Luna-Aceves, J. Behrens, Distributed, scalable

routing based on vectors of link states, IEEE Journal on

Selected Areas in Communications 13 (8) (1995) 1383±

1395.

[31] L. Lou, K. Makki, An even faster approximation algo-

rithm for the Steiner tree problem in graphs, Congressus

Numerantium 59 (1987) 149±154.

[32] J. Moy, Multicast routing extensions for OSPF, Comm.

ACM 37 (8) (1994) 61±66.

[33] K. Makki, N. Pissinou, O. Frieder, Ecient solutions to

multicast routing in communications networks, Mobile

Networks and Applications 1 (1996) 221±232.

[34] C. Perkins, IP Mobility Support', RFC-2002.

[35] V. Rayward-Smith, The computation of nearly minimal

Steiner trees in graphs, International Journal of Mathe-

matics and Educational Science and Technology 14 (1983)

15±23.

[36] RTP: A Transport Protocol for Real-Time Applications,''

Internet Draft, March 1995, hdraft-ietf-avc-svc-rtp-07.txti,

October, 1995.

[37] H.F. Salama, D.S. Reeves, I. Viniotis, Comparison of

multicast routing algorithms for high-speed networks, IBM

Technical Report, September 1994.

[38] H. Takahashi, A. Matsuyama, An approximate solution

for the Steiner problem in graphs, Mathematics Japonica 6

(1980) 573±577.

[39] D.W. Wall, Mechanisms for broadcast and selective

broadcast, Ph.D. Thesis, Stanford University, June

1980.

[40] P. Winter, Steiner problem in networks: a survey, Net-

works 17 (1987) 129±167.

[41] D.W. Wall, S. Owicki, Construction of centered shortest

path trees, Networks 13 (1983) 207±231.

[42] D. Waitzman, C. Partridge, S. Deering, Distance Vector

Multicast Routing Protocol, RFC 1075, 1988.

[43] B.M. Waxman, Routing of multipoint connections, IEEE

Journal on Selected Areas in Communication, 6±9 Decem-

ber 1988, 1617±1622.

[44] L. Wei, D. Estrin, A comparison of multicast trees and

algorithms, CS Department Technical Report, University

of Southern California, September 1993.

Sudhir Aggarwal is Head of the Inter-

net Systems Research Department at

Bell Laboratories, Lucent Technolo-

gies, in Murray Hill, NJ. Prior to his

current position, he was professor and

chairman of the Computer Science

Department at the State University of

New York, Binghamton, NY. His in-

terests are in computer networks, de-

sign and development of distributed

software systems and communication

protocols, real-time systems, and dis-

tributed interactive simulation. He re-

ceived the Ph.D. degree from the

University of Michigan in Computer and Communication Sci-

ences in 1975, and M.S. and B.S degrees in Mathematics from

the University of Michigan and Stanford University in 1971

and 1969, respectively.

Sanjoy Paul
(M'92-SM'97) received a

B.Tech. degree from Indian Institute

of Technology, Kharagpur, India,

followed by M.S and Ph.D. degrees

from University of Maryland, College

Park, in 1988 and 1992 respectively.

He joined AT&T Bell Laboratories

after graduating from University of

Maryland. He is currently a principal

investigator and a distinguished mem-

ber of technical sta in networking

software research department in Bell

Laboratories. His research interests

include caching; multimedia stream-

ing; multicasting; transport, network, and link-layer protocol

issues; formal methods; security; and mobile networking. Dr.

Paul holds nine US patents, has published widely in interna-

tional conferences and journals, and has been on the program

committees of several IEEE conferences. Dr. Paul served as the

guest editor of IEEE Network Magazine Special Issue on

Multicasting. He is the co-recipient of 1997 William R. Bennett

award from IEEE Communications Society for the best original

paper in IEEE/ACM Transactions on Networking in 1996. Dr.

Paul is author of the book ``Multicasting on the Internet and its

Applications'', which was published by Kluwer Academic Press

in May 1998. He is an adjunct faculty of the Computer Science

Department and the Internet Technical Institute of Rutgers

University. Dr. Paul is a senior member of IEEE and a voting

member of the ACM.

60

S. Aggarwal et al. / Computer Networks 32 (2000) 35±60

Daniel Massey
received a B.A. in
Daniela Caldararu
was born in Bu-

Mathematics/Computer Science and
charest, Romania. She holds a B.Sc. in

an M.A. in applied mathematics from
Mathematics and Computer Science

U.C. San Diego. He expects to com-
from Bucharest University, Romania.

plete a Ph.D. in Computer Science
In 1997 she received her M.Sc. in

from UCLA in summer 2000. He pre-
Computer Science from SUNY Bing-

viously worked at the San Diego Su-
hamton, with a thesis in Distributed

percomputer Center and has been a
Systems. She is currently working as a

summer researcher at Bell Labs and
consultant for New Era of Networks.

Xerox PARC. His research interests

include routing protocols, infrastruc-

ture fault tolerance, and network se-

curity.

